Excited-State Electronic Structure in Polypyridyl Complexes Containing Unsymmetrical Ligands.

Journal Article (Journal Article)

Step-scan Fourier transform infrared absorption difference time-resolved (S(2)FTIR DeltaA TRS) and time-resolved resonance Raman (TR(3)) spectroscopies have been applied to a series of questions related to excited-state structure in the metal-to-ligand charge transfer (MLCT) excited states of [Ru(bpy)(2)(4,4'-(CO(2)Et)(2)bpy)](2+), [Ru(bpy)(2)(4-CO(2)Et-4'-CH(3)bpy)](2+), [Ru(bpy)(4,4'-(CO(2)Et)(2)bpy)(2)](2+), [Ru(4,4'-(CO(2)Et)(2)bpy)(3)](2+), [Ru(bpy)(2)(4,4'-(CONEt(2))(2)bpy)](2+), [Ru(bpy)(2)(4-CONEt(2)-4'-CH(3)bpy)](2+), and [Ru(4-CONEt(2)-4'-CH(3)bpy)(3)](2+) (bpy is 2,2'-bipyridine). These complexes contain bpy ligands which are either symmetrically or unsymmetrically derivatized with electron-withdrawing ester or amide substituents. Analysis of the vibrational data, largely based on the magnitudes of the nu(CO) shifts of the amide and ester substituents (Deltanu(CO)), reveals that the ester- or amide-derivatized ligands are the ultimate acceptors and that the excited electron is localized on one acceptor ligand on the nanosecond time scale. In the unsymmetrically substituted acceptor ligands, the excited electron is largely polarized toward the ester- or amide-derivatized pyridine rings. In the MLCT excited states of [Ru(bpy)(2)(4,4'-(CO(2)Et)(2)bpy)](2+) and [Ru(bpy)(2)(4,4'-(CONEt(2))(2)bpy)](2+), Deltanu(CO) is only 60-70% of that observed upon complete ligand reduction due to a strong polarization interaction in the excited state between the dpi(5) Ru(III) core and the excited electron.

Full Text

Duke Authors

Cited Authors

  • Omberg, KM; Smith, GD; Kavaliunas, DA; Chen, P; Treadway, JA; Schoonover, JR; Palmer, RA; Meyer, TJ

Published Date

  • March 1999

Published In

Volume / Issue

  • 38 / 5

Start / End Page

  • 951 - 956

PubMed ID

  • 11670867

Electronic International Standard Serial Number (EISSN)

  • 1520-510X

International Standard Serial Number (ISSN)

  • 0020-1669

Digital Object Identifier (DOI)

  • 10.1021/ic981338l


  • eng