Skip to main content

Boranophosphates support the RNase H cleavage of polyribonucleotides.

Publication ,  Journal Article
Rait, VK; Shaw, BR
Published in: Antisense & nucleic acid drug development
February 1999

Modification of the phosphodiester linkages in DNA by replacing one of the nonbridging oxygens with borane, BH3, produces an isoelectronic mimic of DNA called boranophosphates. Nonstereoregular oligodeoxyribonucleoside all-boranophosphates are shown here for the first time to elicit the RNase H hydrolysis of polyribonucleotides. We compared the ability of three types of dodecamers (dodecathymidine phosphate, phosphorothioate, and boranophosphate) to mediate the cleavage of poly(A) by Escherichia coli RNase H1. The rates of poly(A) hydrolysis induced by boranophosphates were 76-fold (at 20 degrees C) and 18-fold (at 30 degrees C) greater than the rates induced by dodecathymidine phosphate. In conjunction with the measured melting temperatures for each heteroduplex, carried out under the same conditions as the RNAse H cleavage experiments, the data establish an inverse relationship between the heteroduplex thermostability and the rate of poly(A) hydrolysis. Chromatographic analysis revealed another correlation: the higher the heteroduplex Tm, the higher the pApA:pApApA ratio in the corresponding hydrolysates. The specific content of these final products provides insight into the relative contribution of RNase H1 exonucleolytic/endonucleolytic mechanisms, with a low ratio for the lower melting heteroduplexes reflecting more endonucleolytic-type hydrolysis. In total, our data support the concept that antisense molecules with a weakened hybridization potential enhance the rate of hydrolysis of RNA in RNA-DNA hybrids.

Duke Scholars

Published In

Antisense & nucleic acid drug development

DOI

ISSN

1087-2906

Publication Date

February 1999

Volume

9

Issue

1

Start / End Page

53 / 60

Related Subject Headings

  • Thymine Nucleotides
  • Thermodynamics
  • Temperature
  • Solubility
  • Ribonuclease H
  • Polyribonucleotides
  • Poly A
  • Pharmacology & Pharmacy
  • Nucleic Acid Heteroduplexes
  • Molecular Mimicry
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Rait, V. K., & Shaw, B. R. (1999). Boranophosphates support the RNase H cleavage of polyribonucleotides. Antisense & Nucleic Acid Drug Development, 9(1), 53–60. https://doi.org/10.1089/oli.1.1999.9.53
Rait, V. K., and B. R. Shaw. “Boranophosphates support the RNase H cleavage of polyribonucleotides.Antisense & Nucleic Acid Drug Development 9, no. 1 (February 1999): 53–60. https://doi.org/10.1089/oli.1.1999.9.53.
Rait VK, Shaw BR. Boranophosphates support the RNase H cleavage of polyribonucleotides. Antisense & nucleic acid drug development. 1999 Feb;9(1):53–60.
Rait, V. K., and B. R. Shaw. “Boranophosphates support the RNase H cleavage of polyribonucleotides.Antisense & Nucleic Acid Drug Development, vol. 9, no. 1, Feb. 1999, pp. 53–60. Epmc, doi:10.1089/oli.1.1999.9.53.
Rait VK, Shaw BR. Boranophosphates support the RNase H cleavage of polyribonucleotides. Antisense & nucleic acid drug development. 1999 Feb;9(1):53–60.

Published In

Antisense & nucleic acid drug development

DOI

ISSN

1087-2906

Publication Date

February 1999

Volume

9

Issue

1

Start / End Page

53 / 60

Related Subject Headings

  • Thymine Nucleotides
  • Thermodynamics
  • Temperature
  • Solubility
  • Ribonuclease H
  • Polyribonucleotides
  • Poly A
  • Pharmacology & Pharmacy
  • Nucleic Acid Heteroduplexes
  • Molecular Mimicry