Imaging cognition II: An empirical review of 275 PET and fMRI studies.

Published

Journal Article (Review)

Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/motion), language (written/spoken word recognition, spoken/no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.

Full Text

Duke Authors

Cited Authors

  • Cabeza, R; Nyberg, L

Published Date

  • January 2000

Published In

Volume / Issue

  • 12 / 1

Start / End Page

  • 1 - 47

PubMed ID

  • 10769304

Pubmed Central ID

  • 10769304

Electronic International Standard Serial Number (EISSN)

  • 1530-8898

International Standard Serial Number (ISSN)

  • 0898-929X

Digital Object Identifier (DOI)

  • 10.1162/08989290051137585

Language

  • eng