The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks.

Published

Journal Article (Academic article)

All mammalian hepadnaviruses possess a gene, termed X, that encodes a protein capable of transactivating virus gene expression. The X gene overlaps the polymerase and precore genes as well as two newly identified open reading frames (ORFs) termed ORF5 and ORF6. In this investigation, we examined whether ORF5, ORF6, and the X gene were important for the replication of woodchuck hepatitis virus (WHV) in susceptible woodchucks. First, we investigated whether proteins were produced from ORF5 and ORF6 by in vitro translation of appropriate viral transcripts, searched for antibodies against the putative proteins in the sera of animals infected with wild-type virus, and looked for an antisense WHV transcript, necessary for expression of a protein from ORF6, in the livers of acutely or chronically infected woodchucks. All such experiments yielded negative results. Next, we used oligonucleotide-directed mutagenesis to introduce termination codons into ORF5 and ORF6 at two locations within each ORF. Adult woodchucks in groups of three were transfected with one of the four mutant genomes. All of these woodchucks developed WHV infections that were indistinguishable from those of animals transfected with the wild-type WHV recombinant. Polymerase chain reaction amplification and direct DNA sequencing confirmed that reversion of the mutants to a wild-type genotype did not occur. Taken together, these data indicate that ORF5 and ORF6 are not essential for virus replication and are unlikely to represent authentic genes. Finally, we generated five WHV X-gene mutants that either removed the initiation codon for protein synthesis or truncated the carboxyl terminus of the protein by 3, 16, 31, or 52 amino acids. Groups of three adult woodchucks were transfected with one of the five X-gene mutants. Only the mutant that possessed an X gene lacking 3 amino acids from the carboxyl terminus was capable of replication within the 6-month time frame of the experiment. In contrast, all seven woodchucks transfected with wild-type WHV DNA developed markers consistent with viral infection. Thus, it is likely (P

Duke Authors

Cited Authors

  • Chen, HS; Kaneko, S; Girones, R; Anderson, RW; Hornbuckle, WE; Tennant, BC; Cote, PJ; Gerin, JL; Purcell, RH; Miller, RH

Published Date

  • March 1, 1993

Published In

Volume / Issue

  • 67 / 3

Start / End Page

  • 1218 - 1226

International Standard Serial Number (ISSN)

  • 0022-538X

Conference Location

  • united states