New faces of Aegyptopithecus from the Oligocene of Egypt


Journal Article

Three recently discovered faces of Aegyptopithecus zeuxis from the Oligocene Jebel Qatrani Formation of Egypt provide new information about the shape and variation of the facial cranium, the earliest preserved for a presumed forerunner of apes and humans. Although varying considerably in details of shape and proportion, the new finds and a skull found in 1966 all appear to be of males, a conclusion based in part on the development of temporal and sagittal crests and on the large size of upper canines or their sockets (female canines are much smaller). The snouts of the three new faces all are shorter and broader than that of the earlier found skull as reconstructed. As in most later species of Anthropoidea, variation between these specimens is high. Aegyptopithecus helps define the nature of the oldest Anthropoidea and generally most resembles later-occurring apes. Many features, both derived and shared primitive, link Aegyptopithecus, the large Miocene great apes of the Proconsul group, and modern great apes. That these shared features and proportions are not direct allometric consequences of body size is indicated by Aegyptopithecus' resemblance to the large apes and its many distinctions from similar-sized Hylobates. In Aegyptopithecus brain volume scales smaller than in later catarrhines relative to facial size, the ectotympanic tube is less developed and the premaxilla is more primitive than in later higher primates. In closure of orbits and conformation of forehead, face and dentition, Aegyptopithecus closely resembles higher primates and not prosimians. Taken together, its overall cranial and dental anatomy constitutes one of the most important connecting links in primate evolutionary history. © 1987.

Full Text

Cited Authors

  • Simons, EL

Published Date

  • January 1, 1987

Published In

Volume / Issue

  • 16 / 3

Start / End Page

  • 273 - 289

International Standard Serial Number (ISSN)

  • 0047-2484

Digital Object Identifier (DOI)

  • 10.1016/0047-2484(87)90003-0

Citation Source

  • Scopus