Contact atomic structure and electron transport through molecules.

Journal Article (Journal Article)

Using benzene sandwiched between two Au leads as a model system, we investigate from first principles the change in molecular conductance caused by different atomic structures around the metal-molecule contact. Our motivation is the variable situations that may arise in break junction experiments; our approach is a combined density functional theory and Green function technique. We focus on effects caused by (1) the presence of an additional Au atom at the contact and (2) possible changes in the molecule-lead separation. The effects of contact atomic relaxation and two different lead orientations are fully considered. We find that the presence of an additional Au atom at each of the two contacts will increase the equilibrium conductance by up to two orders of magnitude regardless of either the lead orientation or different group-VI anchoring atoms. This is due to a resonance peak near the Fermi energy from the lowest energy unoccupied molecular orbital. In the nonequilibrium properties, the resonance peak manifests itself in a negative differential conductance. We find that the dependence of the equilibrium conductance on the molecule-lead separation can be quite subtle: either very weak or very strong depending on the separation regime.

Full Text

Duke Authors

Cited Authors

  • Ke, S-H; Baranger, HU; Yang, W

Published Date

  • February 2005

Published In

Volume / Issue

  • 122 / 7

Start / End Page

  • 074704 -

PubMed ID

  • 15743262

Electronic International Standard Serial Number (EISSN)

  • 1089-7690

International Standard Serial Number (ISSN)

  • 0021-9606

Digital Object Identifier (DOI)

  • 10.1063/1.1851496


  • eng