Elucidation of aberrant purine metabolism: application to hypoxanthine-guanine phosphoribosylstransferase- and adenosine kinase-deficient mutants, and IMP dehydrogenase- and adenosine deaminase-inhibited human lymphoblasts.

Journal Article (Journal Article)

We propose that the ratio of [14C]formate-labelled purine nucleosides and bases (both intra and extracellular) to nucleic acid purines provides, in exponentially growing cultures, a sensitive index for comparative studies of purine metabolism. This ratio was 4-fold greater for an HGPRT- mutant than for the parental HGPRT+ human lymphoblast line. The major components of the labelled nucleoside and base fraction were hypoxanthine and inosine. By blocking adenosine deaminase activity with coformycin we found that approx. 90% of inosine was formed directly from IMP rather than the route IMP leads to AMP leads to adenosine leads to inosine. The ratio of labelled base + nucleosides to nucleic acids was essentially unchagned for an AK- lymphoblast line and 2-fold greater than control for an HGPRT(-)-KAK- line, demonstrating that a deficiency of adenosine kinase alone has little effect on the accumulation of purine nucleosides and bases. Although adenosine was a minor component of the nucleoside and base fraction, the adenosine fraction increased from 3 to 13% with the addition of coformycin to the HGPRT(-)-AK- line. In the parental and HGPRT- lines, adenosine was shown to be primarily phosphorylated rather than deaminated at concentrations less than 5 microM. Inhibition of IMP dehydrogenase activity by mycophenolic acid caused a 12- and 3-fold increase in the rate of production of labelled base and nucleoside in the parent and HGPRT- cells respectively. These results suggest that a mutationally induced partial deficiency in the activities converting IMP to guanine nucleotides may result in an increased catabolism of IMP.

Full Text

Duke Authors

Cited Authors

  • Snyder, FF; Trafzer, RJ; Hershfield, MS; Seegmiller, JE

Published Date

  • October 17, 1980

Published In

Volume / Issue

  • 609 / 3

Start / End Page

  • 492 - 501

PubMed ID

  • 6108130

International Standard Serial Number (ISSN)

  • 0006-3002

Digital Object Identifier (DOI)

  • 10.1016/0005-2787(80)90123-9


  • eng

Conference Location

  • Netherlands