Epistasis and balanced polymorphism influencing complex trait variation.

Journal Article (Journal Article)

Complex traits such as human disease, growth rate, or crop yield are polygenic, or determined by the contributions from numerous genes in a quantitative manner. Although progress has been made in identifying major quantitative trait loci (QTL), experimental constraints have limited our knowledge of small-effect QTL, which may be responsible for a large proportion of trait variation. Here, we identified and dissected a one-centimorgan chromosome interval in Arabidopsis thaliana without regard to its effect on growth rate, and examined the signature of historical sequence polymorphism among Arabidopsis accessions. We found that the interval contained two growth rate QTL within 210 kilobases. Both QTL showed epistasis; that is, their phenotypic effects depended on the genetic background. This amount of complexity in such a small area suggests a highly polygenic architecture of quantitative variation, much more than previously documented. One QTL was limited to a single gene. The gene in question displayed a nucleotide signature indicative of balancing selection, and its phenotypic effects are reversed depending on genetic background. If this region typifies many complex trait loci, then non-neutral epistatic polymorphism may be an important contributor to genetic variation in complex traits.

Full Text

Duke Authors

Cited Authors

  • Kroymann, J; Mitchell-Olds, T

Published Date

  • May 2005

Published In

Volume / Issue

  • 435 / 7038

Start / End Page

  • 95 - 98

PubMed ID

  • 15875023

Electronic International Standard Serial Number (EISSN)

  • 1476-4687

International Standard Serial Number (ISSN)

  • 0028-0836

Digital Object Identifier (DOI)

  • 10.1038/nature03480


  • eng