Scrambling and gate-induced fluctuations in realistic quantum dots

Published

Journal Article

We evaluate the magnitude of two important mesoscopic effects using a realistic model of typical quantum dots. "Scrambling" and "gate effect" are defined as the change in the single-particle spectrum due to added electrons or gate-induced shape deformation, respectively. These two effects are investigated systematically in both the 'self-consistent Kohn-Sham (KS) theory and a Fermi liquidlike Strutinsky approach. We find that the genuine scrambling effect is small because the potential here is smooth. In the KS theory, a key point is the implicit inclusion of residual interactions in the spectrum; these dominate and make scrambling appear larger. Finally, the gate effect is comparable in the two cases and, while small, is able to cause gate-induced spin transitions. ©2005 The American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Jiang, H; Ullmo, D; Yang, W; Baranger, HU

Published Date

  • February 1, 2005

Published In

Volume / Issue

  • 71 / 8

Electronic International Standard Serial Number (EISSN)

  • 1550-235X

International Standard Serial Number (ISSN)

  • 1098-0121

Digital Object Identifier (DOI)

  • 10.1103/PhysRevB.71.085313

Citation Source

  • Scopus