Electron transport through molecules: Gate-induced polarization and potential shift

Journal Article

We analyze the effect of a gate on the conductance of molecules by separately evaluating the gate-induced polarization and the potential shift of the molecule relative to the leads. The calculations use ab initio density functional theory combined with a Green function method for electron transport. For a general view, we study several systems: (1) atomic chains of C or Al sandwiched between Al electrodes, (2) a benzene molecule between Au leads, and (3) (9,0) and (5,5) carbon nanotubes. We find that the polarization effect is small because of screening, while the effect of the potential shift is significant, providing a mechanism for single-molecule transistors. ©2005 The American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Ke, SH; Baranger, HU; Yang, W

Published Date

  • March 15, 2005

Published In

Volume / Issue

  • 71 / 11

Electronic International Standard Serial Number (EISSN)

  • 1550-235X

International Standard Serial Number (ISSN)

  • 1098-0121

Digital Object Identifier (DOI)

  • 10.1103/PhysRevB.71.113401

Citation Source

  • Scopus