Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits.

Journal Article (Journal Article)

We examined patterns of genetic variance and covariance in two traits (i) carbon stable isotope ratio delta13C (dehydration avoidance) and (ii) time to flowering (drought escape), both of which are putative adaptations to local water availability. Greenhouse screening of 39 genotypes of Arabidopsis thaliana native to habitats spanning a wide range of climatic conditions, revealed a highly significant positive genetic correlation between delta13C and flowering time. Studies in a range of C3 annuals have also reported large positive correlations, suggesting the presence of a genetically based trade-off between mechanisms of dehydration avoidance (delta13C) and drought escape (early flowering). We examined the contribution of pleiotropy by using a combination of mutant and near-isogenic lines to test for positive mutational covariance between delta13C and flowering time. Ecophysiological mutants generally showed variation in delta13C but not flowering time. However, flowering time mutants generally demonstrated pleiotropic effects consistent with natural variation. Mutations that caused later flowering also typically resulted in less negative delta13C and thus probably higher water use efficiency. We found strong evidence for pleiotropy using near-isogenic lines of Frigida and Flowering locus C, cloned loci known to be responsible for natural variation in flowering time. These data suggest the correlated evolution of delta13C and flowering time is explained in part by the fixation of pleiotropic alleles that alter both delta13C and time to flowering.

Full Text

Duke Authors

Cited Authors

  • McKay, JK; Richards, JH; Mitchell-Olds, T

Published Date

  • May 2003

Published In

Volume / Issue

  • 12 / 5

Start / End Page

  • 1137 - 1151

PubMed ID

  • 12694278

Electronic International Standard Serial Number (EISSN)

  • 1365-294X

International Standard Serial Number (ISSN)

  • 0962-1083

Digital Object Identifier (DOI)

  • 10.1046/j.1365-294x.2003.01833.x


  • eng