Neuroendocrine control of follicle-stimulating hormone (FSH) secretion: II. Is follistatin-induced suppression of FSH secretion mediated via changes in activin availability and does it involve changes in gonadotropin-releasing hormone secretion?


Journal Article

The objective of the present study was to determine to what extent activin participates in setting the level of FSH secretion and if this regulation includes mediation via changes in GnRH secretion. We administered follistatin, the high-affinity binding protein for activin, to five ovariectomized sheep; we reasoned that the resultant binding of follistatin to activin should lower activin bioavailability and FSH secretion. Hypophyseal portal and peripheral blood samples were collected simultaneously at 10-min intervals for 18 h to measure GnRH, LH, FSH, and both activin-free and total follistatin. Six hours into collection, each ewe received 150 microg/kg i.v. of recombinant human follistatin-288. A week later, the same ewes were subjected to a second series of blood collections of similar length (time control). The FSH levels in pituitary portal blood were approximately 8-fold higher than those in the peripheral circulation. The FSH secretory patterns changed minimally during the time-control period. In contrast, follistatin had profound suppressive effects on FSH secretion. Maximal FSH suppression after FS-288 administration occurred at 5-6 h in the pituitary portal (65% suppression) and 9-10 h in the peripheral (48% suppression) circulation. Follistatin had no effect on GnRH or LH secretory patterns. Disappearance of total follistatin (i.e., free follistatin plus activin-bound follistatin) from the circulation was slower (P < 0.05) than that of free follistatin alone, suggesting that some of the follistatin was complexed with circulating activin, thus reducing the bioavailability of activin. The slower clearance of total follistatin and the lack of follistatin effects on GnRH secretion suggest that changes in activin bioavailability dictate the level of pituitary FSH secretion and that this is a pituitary-specific effect.

Full Text

Cited Authors

  • Padmanabhan, V; Battaglia, D; Brown, MB; Karsch, FJ; Lee, JS; Pan, W; Phillips, DJ; Van Cleeff, J

Published Date

  • May 2002

Published In

Volume / Issue

  • 66 / 5

Start / End Page

  • 1395 - 1402

PubMed ID

  • 11967203

Pubmed Central ID

  • 11967203

Electronic International Standard Serial Number (EISSN)

  • 1529-7268

International Standard Serial Number (ISSN)

  • 0006-3363

Digital Object Identifier (DOI)

  • 10.1095/biolreprod66.5.1395


  • eng