The effect of soluble complement receptor type 1 on hyperacute xenograft rejection.

Published

Journal Article

In the guinea pig-to-rat model of hyperacute xenograft (Xg) rejection, the effect of complement inhibition using systemically administered soluble complement receptor type 1 (sCR1) on discordant cardiac Xg survival was investigated. In PBS-treated control Xg recipients (n = 13), hyperacute rejection was rapid, with a mean Xg survival of 17 +/- 4 min. Therapy with sCR1 prolonged survival of cardiac Xgs in a dose-dependent manner. A 3 mg/kg bolus of sCR1 (n = 4) prolonged Xg survival to 64 +/- 29 min (not significant). Increasing the sCR1 dose to 5.9 mg/kg (n = 4) significantly delayed Xg rejection to 71 +/- 17 min (P-0.026, log-rank test vs. control). In 10 recipients treated with 15 mg/kg sCR1, mean Xg survival was further prolonged to 189 +/- 36 min (P-0.0004) with no adverse effects. While 2 of 8 recipients receiving 60 mg/kg sCR1 died with functioning Xgs at 30 and 300 min due to anastomotic bleeding, Xg survival averaged over 12 hr (747 +/- 100 min, P-0.0004) in the remaining 6 recipients. sCR1 administration significantly inhibited serum complement activity in a parallel dose-dependent fashion, with the 60 mg/kg dose reducing complement activity by 95 +/- 1 and 96 +/- 1% five and 30 min following Xg reperfusion, respectively. Immunofluorescence microscopy revealed rat IgM bound to all cardiac Xgs in control as well as sCR1-treated recipients. In addition, serial histologic examination of cardiac Xgs harvested within 21 min of graft reperfusion revealed occlusive platelet aggregates within the coronary vessels as well as interstitial hemorrhage and myocardial necrosis in Xgs from control recipients, all of which were only minimally present in Xgs from recipients treated with sCR1. These studies show that complement inhibition with sCR1 significantly delays hyperacute cardiac Xg rejection in this discordant model and may be an important component in a therapeutic protocol for xenotransplantation.

Full Text

Duke Authors

Cited Authors

  • Pruitt, SK; Baldwin, WM; Marsh, HC; Lin, SS; Yeh, CG; Bollinger, RR

Published Date

  • November 1991

Published In

Volume / Issue

  • 52 / 5

Start / End Page

  • 868 - 873

PubMed ID

  • 1949173

Pubmed Central ID

  • 1949173

Electronic International Standard Serial Number (EISSN)

  • 1534-6080

International Standard Serial Number (ISSN)

  • 0041-1337

Language

  • eng