Stimulation and inhibition of 1,3-bis(2-chloroethyl)-1-nitrosourea-induced strand breaks and interstrand cross-linking in Col E1 plasmid deoxyribonucleic acid by polyamines and inorganic cations.

Journal Article

The influence of various polyamines and metallic cations on 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-induced DNA single-strand breaks and DNA interstrand cross-linking was in Col E1 plasmid using electrophoretic techniques. Spermidine and spermine (0.4 to 1.5 mM concentration range) markedly stimulated BCNU-induced DNA nicking, whereas putrescine had no effect on the nicking process. In contrast to the polyamines, BCNU-induced DNA nicking was decreased by the three inorganic cations, Na+ (100 and 200 mM), Mg2+ (0.5 and 1.5 mM), and Co3+ (NH3)6 (0.2 and 0.4 mM), with the trivalent hexamminecobalt ions being most inhibitory. When the monofunctional N-methyl-N-nitrosourea (MNU) was used (instead of the bifunctionally active BCNU) to alkylate Col E1 DNA, nicking of the DNA was inhibited by spermidine. Furthermore, the ability of chloroethylated Col E1 DNA to form interstrand cross-links after treatment with BCU was inhibited by 0.5 mM spermidine and 0.5 mM spermine, both concentrations within the intracellular range. Putrescine at 3-6 mM only marginally stimulated DNA cross-linking. In comparison, the inorganic cations all enhanced Col E1 DNA cross-linking by BCNU, with the rank order of cross-link stimulation being Mg2+, Na+, and Co3+ (NH3)6. These results provide evidence that polyamines can interact with DNA to modulate chloroethylnitrosourea-induced DNA damage and that the interaction is not only a function of the charge on the polyamine molecule but also of the chemical structure of the polyamine.

Full Text

Duke Authors

Cited Authors

  • Srivenugopal, KS; Ali-Osman, F

Published Date

  • August 1, 1990

Published In

Volume / Issue

  • 40 / 3

Start / End Page

  • 473 - 479

PubMed ID

  • 2200407

Pubmed Central ID

  • 2200407

International Standard Serial Number (ISSN)

  • 0006-2952

Digital Object Identifier (DOI)

  • 10.1016/0006-2952(90)90545-v


  • eng

Conference Location

  • England