Red cell antigens as functional molecules and obstacles to transfusion.

Published

Journal Article (Review)

Blood group antigens (BGAs) can act as functional molecules but also can evoke autoantibodies and alloantibodies, causing autoimmune hemolytic anemia, hemolytic disease of the newborn and hemolytic transfusion reactions. In Section I, Dr. Marilyn Telen discusses physiologic and pathologic functions of RBC BGA-bearing molecules. She reviews some associations of BGAs with RBC membrane integrity and hemolytic anemia; association of BGAs with enzymatic and transport functions; and adhesion molecules expressed by RBCs, especially with reference to their pathophysiological role in sickle cell disease. In Section II, Dr. Lawrence Petz discusses the problems of providing blood for patients who have RBC autoantibodies. He provides an algorithm for excluding the presence of "hidden" alloantibodies, when all units appear to be incompatible due to the autoantibody. He emphasizes that clinicians should be aware of these approaches and not accept "the least incompatible unit." In Section III, Dr. George Garratty describes two processes, in development, that produce RBCs that result in RBCs that can be described as "universal" donor or "stealth" RBCs. The first process involves changing group A, B, or AB RBCs into group O RBCs by removing the immunospecific sugars responsible for A and B specificity by using specific enzymes. The second process involves covering all BGAs on the RBC surface using polyethylene glycol (PEG). Results of in vitro and in vivo studies on these modified RBCs are discussed.

Full Text

Duke Authors

Cited Authors

  • Garratty, G; Telen, MJ; Petz, LD

Published Date

  • 2002

Published In

Start / End Page

  • 445 - 462

PubMed ID

  • 12446436

Pubmed Central ID

  • 12446436

International Standard Serial Number (ISSN)

  • 1520-4391

Language

  • eng

Conference Location

  • United States