Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex.


Journal Article

Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo.

Full Text

Cited Authors

  • Tropea, D; Kreiman, G; Lyckman, A; Mukherjee, S; Yu, H; Horng, S; Sur, M

Published Date

  • May 2006

Published In

Volume / Issue

  • 9 / 5

Start / End Page

  • 660 - 668

PubMed ID

  • 16633343

Pubmed Central ID

  • 16633343

Electronic International Standard Serial Number (EISSN)

  • 1546-1726

International Standard Serial Number (ISSN)

  • 1097-6256

Digital Object Identifier (DOI)

  • 10.1038/nn1689


  • eng