4-Quinolone drugs affect cell cycle progression and function of human lymphocytes in vitro.


Journal Article

Most antibacterial agents do not affect human lymphocyte function, but a few are inhibitory. In contrast, a pronounced increase in the incorporation of [3H]thymidine in the presence of 4-quinolones was observed in these studies. The uptake of [3H]thymidine into DNA (trichloroacetic acid precipitable) was significantly increased in phytohemagglutinin-stimulated human lymphocytes when they were exposed to eight new 4-quinolone derivatives, ciprofloxacin, norfloxacin, ofloxacin, A-56619, A-56620, amifloxacin, enoxacin, and pefloxacin, at 1.6 to 6.25 micrograms/ml for 5 days. Four less antibacterially active 4-quinolones (nalidixic acid, cinoxacin, flumequine, and pipemidic acid) stimulated [3H]thymidine incorporation only at higher concentrations or not at all. Kinetic studies showed that incorporation of [3H]thymidine was not affected or slightly inhibited by ciprofloxacin 2 days after phytohemagglutinin stimulation but was increased on days 3 to 6. The total incorporation of [3H]thymidine from day 1 to day 6 after phytohemagglutinin stimulation was increased by 42 to 45% at 5 to 20 micrograms of ciprofloxacin per ml. Increased [3H]thymidine incorporation was also seen when human lymphocytes were stimulated with mitogens other than phytohemagglutinin. Ciprofloxacin added at the start of the culture had a more pronounced effect on [3H]thymidine incorporation than when added later. In spite of the apparent increase in DNA synthesis, lymphocyte growth was inhibited by 20 micrograms of ciprofloxacin per ml, and cell cycle analysis showed that ciprofloxacin inhibited progression through the cell cycle. In addition, immunoglobulin secretion by human lymphocytes stimulated by pokeweed mitogen for Epstein-Barr virus was inhibited by approximately 50% at 5 micrograms of ciprofloxacin per ml. These results suggest that the 4-quinolone drugs may also affect eucaryotic cell function in vitro, but additional studies are needed to establish an in vivo relevance.

Full Text

Duke Authors

Cited Authors

  • Forsgren, A; Schlossman, SF; Tedder, TF

Published Date

  • May 1987

Published In

Volume / Issue

  • 31 / 5

Start / End Page

  • 768 - 773

PubMed ID

  • 3606076

Pubmed Central ID

  • 3606076

International Standard Serial Number (ISSN)

  • 0066-4804

Digital Object Identifier (DOI)

  • 10.1128/aac.31.5.768


  • eng

Conference Location

  • United States