The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules.

Journal Article (Journal Article)

CD19 is a member of the Ig superfamily expressed on the surface of B lymphocytes that may be involved in the regulation of B cell function. Immunoprecipitation studies with B cell lines solubilized by digitonin have shown CD19 to be part of a multimolecular complex that includes CD21 (CR2) and other unidentified proteins. In this study, two of the CD19-associated proteins were identified as TAPA-1, which is expressed on most cell types, and Leu-13, which is expressed on subsets of lymphoid cells. TAPA-1 and Leu-13 are physically associated in many cell lineages. CD19 and CD21 mAb each specifically coprecipitated proteins of the same size as those precipitated by TAPA-1 and Leu-13 mAb from B cell lines and cDNA-transfected K562 cell lines. Western blot analysis with a TAPA-1 mAb verified the identity of TAPA-1 in CD19 and CD21 immunoprecipitated materials. In addition, when TAPA-1 or Leu-13 were crosslinked and patched on the cell surface, all of the CD19 comigrated with TAPA-1 and some of the CD19 comigrated with Leu-13. Furthermore, mAb binding to CD19, CD21, TAPA-1, and Leu-13 on B cell lines induced similar biologic responses, including the induction of homotypic adhesion, inhibition of proliferation, and an augmentation of the increase in intracellular [Ca2+] induced by suboptimal cross-linking of surface Ig on B cell lines. Together, these data suggest that TAPA-1 and Leu-13 are broadly expressed members of a signal transduction complex in which lineage-specific proteins, such as CD19 and CD21, provide cell-specific functions.

Full Text

Duke Authors

Cited Authors

  • Bradbury, LE; Kansas, GS; Levy, S; Evans, RL; Tedder, TF

Published Date

  • November 1, 1992

Published In

Volume / Issue

  • 149 / 9

Start / End Page

  • 2841 - 2850

PubMed ID

  • 1383329

International Standard Serial Number (ISSN)

  • 0022-1767


  • eng

Conference Location

  • United States