Survival of retinal pigment epithelium after exposure to prolonged oxidative injury: a detailed gene expression and cellular analysis.

Journal Article (Journal Article)

PURPOSE: To detail, by DNA microarrays and cellular structure labeling, the in vitro responses of retinal pigment epithelial (RPE) cells to a nonlethal dose of the oxidant agent hydroquinone (HQ). METHODS: The viability of growth-quiescent ARPE-19 cells after treatment with HQ was measured by XTT conversion, (3)H-leucine incorporation, trypan blue exclusion, and the presence of DNA laddering. The effect of a nonlethal dose of HQ on the localization of apoptosis-induced factor (AIF) and phosphorylation of stress-activated kinase-2/p38 (SAPK2/p38) was detected by immunocytochemistry. Actin structures were visualized by phalloidin staining. Cell membrane blebbing was detected using GFP-membrane-labeled RPE cells (ARPE-GFP-c'-rRas). Changes in gene expression patterns of RPE cells within 48 hours of prolonged treatment with a nonlethal dose of HQ were evaluated by microarray analysis and confirmed by Northern blotting. RESULTS: The viability of RPE after a prolonged sublethal injury dose of HQ was determined by multiple assays and confirmed by the absence of AIF translocation or DNA laddering. Prolonged exposure (16 hours) of RPE cells to a nonlethal dose of HQ resulted in actin rearrangement into globular aggregates and cell membrane blebbing. Kinetic microarray analysis at several time points over a 48-hour recovery period revealed significant upregulation of genes involved in ameliorating the oxidative stress, chaperone proteins, anti-apoptotic factors, and DNA repair factors, and downregulation of pro-apoptotic genes. Genes involved in extracellular matrix functions were also dysregulated. Recovery of RPE cells after the injury was confirmed by the normalization of gene expression dysregulation back to baseline levels within 48 hours. CONCLUSIONS: RPE cells avoided cell death and recovered from prolonged oxidative injury by activating a host of defense mechanisms while simultaneously triggering genes and cellular responses that may be involved in RPE disease development.

Full Text

Duke Authors

Cited Authors

  • Strunnikova, N; Zhang, C; Teichberg, D; Cousins, SW; Baffi, J; Becker, KG; Csaky, KG

Published Date

  • October 2004

Published In

Volume / Issue

  • 45 / 10

Start / End Page

  • 3767 - 3777

PubMed ID

  • 15452088

International Standard Serial Number (ISSN)

  • 0146-0404

Digital Object Identifier (DOI)

  • 10.1167/iovs.04-0311


  • eng

Conference Location

  • United States