Activation-dependent subconductance levels in the drk1 K channel suggest a subunit basis for ion permeation and gating.

Journal Article (Journal Article)

Ion permeation and channel opening are two fundamental properties of ion channels, the molecular bases of which are poorly understood. Channels can exist in two permeability states, open and closed. The relative amount of time a channel spends in the open conformation depends on the state of activation. In voltage-gated ion channels, activation involves movement of a charged voltage sensor, which is required for channel opening. Single-channel recordings of drk1 K channels expressed in Xenopus oocytes suggested that intermediate current levels (sublevels) may be associated with transitions between the closed and open states. Because K channels are formed by four identical subunits, each contributing to the lining of the pore, it was hypothesized that these sublevels resulted from heteromeric pore conformations. A formal model based on this hypothesis predicted that sublevels should be more frequently observed in partially activated channels, in which some but not all subunits have undergone voltage-dependent conformational changes required for channel opening. Experiments using the drk1 K channel, as well as drk1 channels with mutations in the pore and in the voltage sensor, showed that the probability of visiting a sublevel correlated with voltage- and time-dependent changes in activation. A subunit basis is proposed for channel opening and permeation in which these processes are coupled.

Full Text

Duke Authors

Cited Authors

  • Chapman, ML; VanDongen, HM; VanDongen, AM

Published Date

  • February 1997

Published In

Volume / Issue

  • 72 / 2 Pt 1

Start / End Page

  • 708 - 719

PubMed ID

  • 9017198

Pubmed Central ID

  • PMC1185596

International Standard Serial Number (ISSN)

  • 0006-3495

Digital Object Identifier (DOI)

  • 10.1016/s0006-3495(97)78707-1


  • eng

Conference Location

  • United States