Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1.

Published

Journal Article

The nuclear expression of mitochondrial transcription factor A (Tfam), which is required for mitochondrial DNA (mtDNA) transcription and replication, must be linked to cellular energy needs. Because respiration generates reactive oxygen species as a side-product, we tested the idea that reactive oxygen species regulate Tfam expression through phosphorylation of nuclear respiratory factor (NRF-1) and binding to the Tfam promoter. In mitochondria-rich rat hepatoma cells that overexpress NRF-1, basal and oxidant-induced increases were found in Tfam expression and mtDNA content. Specific binding of NRF-1 to Tfam promoter was demonstrated by electrophoretic mobility shift assay and chromatin immunoprecipitation. NRF-1-Tfam binding was augmented under pro-oxidant conditions. NRF-1 gene silencing produced 1:1 knockdown of Tfam expression and decreased mtDNA content. To evaluate oxidation-reduction (redox) regulation of NRF-1 in Tfam expression, blockade of upstream phosphatidylinositol 3-kinase was used to demonstrate loss of oxidant stimulation of NRF-1 phosphorylation and Tfam expression. The oxidant response was also abrogated by specific inhibition of Akt/protein kinase B. Examination of the NRF-1 amino acid sequence revealed an Akt phosphorylation consensus at which site-directed mutagenesis abolished NRF-1 phosphorylation by Akt. Finally, Akt phosphorylation and NRF-1 translocation predictably lacked oxidant regulation in a cancer line having no PTEN tumor suppressor (HCC1937 cells). This study discloses novel redox regulation of NRF-1 phosphorylation and nuclear translocation by phosphatidylinositol 3,4,5-triphosphate kinase/Akt signaling in controlling Tfam induction by an anti-oxidant pro-survival network.

Full Text

Duke Authors

Cited Authors

  • Piantadosi, CA; Suliman, HB

Published Date

  • January 2006

Published In

Volume / Issue

  • 281 / 1

Start / End Page

  • 324 - 333

PubMed ID

  • 16230352

Pubmed Central ID

  • 16230352

Electronic International Standard Serial Number (EISSN)

  • 1083-351X

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.m508805200

Language

  • eng