Ventilator Y-piece pressure compared with intratracheal airway pressure in healthy intubated children.


Journal Article

Compare airway pressure measurements at the ventilator Y-piece of the breathing circuit (P( Y )) to intratracheal pressure measured at the distal end (P( T )) of the endotracheal tube (ETT) during mechanical ventilation and spontaneous breathing of intubated children.Thirty children (age range 29 days to 5 years) receiving general anesthesia were intubated with an ETT incorporating a lumen embedded in its sidewall that opened at the distal end to measure P( T ). Peak inflation pressure (PIP) was measured at P( Y ) and P( T ) during positive pressure ventilation. Just before extubation, all measurements were repeated and imposed resistive work of breathing (WOBi) was calculated at both sites while breathing spontaneously.Average PIP was approximately 25% greater at P( Y ) (19.7 +/- 3.4 cm H(2)O) vs. P( T ) (15.0 +/- 2.9 cm H(2)O), p < 0.01. During spontaneous inhalation P( T ) was 59% lower ({bond}8.5 +/- 4.0 cm H(2)O) vs. P( Y ) ({bond}3.5 +/- 2.0 cm H(2)O), p < 0.01. WOBi measured at P( Y ) (0.10 +/- 0.02 Joule/L) was 86% less than WOBi measured at P( T ) (0.70 +/- 0.40 Joule/L), p < 0.01.In healthy children P( Y ) significantly overestimates PIP in the trachea during positive pressure ventilation and underestimates the intratracheal airway pressure during spontaneous inhalation. During positive pressure ventilation P( T ) better assesses the pressure generated in the airways and lungs compared to P( Y ) because P( T ) also includes the difference in airway pressure across the ETT tube due to resistance. During spontaneous inhalation, P( T ) reflects the series resistance of the ETT and ventilator circuit, while P( Y ) reflects only the resistance of the ventilator circuit, accounting for the smaller decreases in pressure. Additionally, P( Y ) underestimates the total WOBi load on the respiratory muscles. Thus, P( T ) is a more accurate reflection of pulmonary airway pressures than P( Y ) and suggests that it should be incorporated into ventilator systems to more accurately trigger the ventilator and to reduce work of breathing.

Full Text

Cited Authors

  • Nasiroglu, O; Weldon, BC; Berman, LS; Haque, IU

Published Date

  • April 2006

Published In

Volume / Issue

  • 20 / 2

Start / End Page

  • 95 - 100

PubMed ID

  • 16779622

Pubmed Central ID

  • 16779622

Electronic International Standard Serial Number (EISSN)

  • 1573-2614

International Standard Serial Number (ISSN)

  • 1387-1307

Digital Object Identifier (DOI)

  • 10.1007/s10877-006-9012-5


  • eng