Characterization of the domain chaos convection state by the largest Lyapunov exponent.

Published

Journal Article

Using numerical integrations of the Boussinesq equations in rotating cylindrical domains with realistic boundary conditions, we have computed the value of the largest Lyapunov exponent lambda1 for a variety of aspect ratios and driving strengths. We study in particular the domain chaos state, which bifurcates supercritically from the conducting fluid state and involves extended propagating fronts as well as point defects. We compare our results with those from Egolf, [Nature 404, 733 (2000)], who suggested that the value of lambda1 for the spiral defect chaos state of a convecting fluid was determined primarily by bursts of instability arising from short-lived, spatially localized dislocation nucleation events. We also show that the quantity lambda1 is not intensive for aspect ratios Gamma over the range 20<40 and that the scaling exponent of lambda1 near onset is consistent with the value predicted by the amplitude equation formalism.

Full Text

Duke Authors

Cited Authors

  • Jayaraman, A; Scheel, JD; Greenside, HS; Fischer, PF

Published Date

  • July 26, 2006

Published In

Volume / Issue

  • 74 / 1 Pt 2

Start / End Page

  • 016209 -

PubMed ID

  • 16907179

Pubmed Central ID

  • 16907179

Electronic International Standard Serial Number (EISSN)

  • 1550-2376

International Standard Serial Number (ISSN)

  • 1539-3755

Digital Object Identifier (DOI)

  • 10.1103/physreve.74.016209

Language

  • eng