Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect.

Published

Journal Article

Approximately 2% of Caucasians and African-Americans are homozygous for a nonsense mutation in exon 2 of the AMPD1 (AMP deaminase) gene. These individuals have a high grade deficiency of AMPD activity in their skeletal muscle. More than 100 patients with AMPD1 deficiency have been reported to have symptoms of a metabolic myopathy, but it is apparent many individuals with this inherited defect are asymptomatic given the prevalence of this mutant. Results of the present study provide a potential molecular explanation for "correction" of this genetic defect. Alternative splicing eliminates exon 2 in 0.6-2% of AMPD1 mRNA transcripts in adult skeletal muscle. Expression studies document that AMPD1 mRNA, which has exon 2 deleted, encodes a functional AMPD peptide. A much higher percentage of alternatively spliced transcripts are found during differentiation of human myocytes in vitro. Transfection studies with human minigene constructs demonstrate that alternative splicing of the primary transcript of human AMPD1 is controlled by tissue-specific and stage-specific signals. Alternative splicing of exon 2 in individuals who have inherited this defect provides a mechanism for phenotypic rescue and variations in splicing patterns may contribute to the variability in clinical symptoms.

Full Text

Duke Authors

Cited Authors

  • Morisaki, H; Morisaki, T; Newby, LK; Holmes, EW

Published Date

  • May 1993

Published In

Volume / Issue

  • 91 / 5

Start / End Page

  • 2275 - 2280

PubMed ID

  • 8486786

Pubmed Central ID

  • 8486786

Electronic International Standard Serial Number (EISSN)

  • 1558-8238

International Standard Serial Number (ISSN)

  • 0021-9738

Digital Object Identifier (DOI)

  • 10.1172/jci116455

Language

  • eng