Conductance transients onto dendritic spines in a segmental cable model of hippocampal neurons.

Published

Journal Article

Dendritic shaft (Zd) and spine (Zsp) input impedances were computed numerically for sites on hippocampal neurons, using a segmental format of cable calculations. The Zsp values for a typical spine appended onto a dendritic shaft averaged less than 2% higher than the Zd values for the adjacent dendritic shaft. Spine synaptic inputs were simulated by a brief conductance transient, which possessed a time integral of 12 X 10(-10)S X ms. This input resulted in an average peak spine response of 20 mV for both dentate granule neurons and CA1 pyramidal cells. The average spine transient was attenuated less than 2% in conduction across the spine neck, considering peak voltage, waveform parameters, and charge transfer. The spine conductance transient resulted in an average somatic response of 100 microV in the dentate granule neurons, because of passive electrotonic propagation. The same input transient was also applied to proximal and distal sites on CA1 pyramidal cells. The predicted responses at the soma demonstrated a clear difference between the proximal and distal inputs, in terms of both peak voltage and waveform parameters. Thus, the main determinant of the passive propagation of transient electrical signals in these neurons appears to be dendritic branching rather than signal attenuation through the spine neck.

Full Text

Cited Authors

  • Turner, DA

Published Date

  • July 1, 1984

Published In

Volume / Issue

  • 46 / 1

Start / End Page

  • 85 - 96

PubMed ID

  • 6743760

Pubmed Central ID

  • 6743760

Electronic International Standard Serial Number (EISSN)

  • 1542-0086

International Standard Serial Number (ISSN)

  • 0006-3495

Digital Object Identifier (DOI)

  • 10.1016/s0006-3495(84)84001-1

Language

  • eng