Prevention of the polycystic ovarian phenotype and characterization of ovulatory capacity in the estrogen receptor-alpha knockout mouse.

Published

Journal Article

Ovarian-derived estradiol plays a critical endocrine role in the regulation of gonadotropin synthesis and secretion from the hypothalamic-pituitary axis. In turn, several para/autocrine effects of estrogen within the ovary are known, including increased ovarian weight, stimulation of granulosa cell growth, augmentation of FSH action, and attenuation of apoptosis. The estrogen receptor-alpha (ERalpha) is present in all three components of the hypothalamic-pituitary-ovarian axis of the mouse. In contrast, estrogen receptor-beta (ERbeta) is easily detectable in ovarian granulosa cells but is low to absent in the pituitary of the adult mouse. This distinct expression pattern for the two ERs suggests the presence of separate roles for each in the regulation of ovarian function. Herein, we definitively show that a lack of ERalpha in the hypothalamic-pituitary axis of the ERalpha-knockout (alphaERKO) mouse results in chronic elevation of serum LH and is the primary cause of the ovarian phenotype of polycystic follicles and anovulation. Prolonged treatment with a GnRH antagonist reduced serum LH levels and prevented the alphaERKO cystic ovarian phenotype. To investigate a direct role for ERalpha within the ovary, immature alphaERKO females were stimulated to ovulate with exogenous gonadotropins. Ovulatory capacity in the immature alphaERKO female was reduced compared with age-matched wild-type (14.5+/-2.9 vs. 40.6+/-2.6 oocytes/animal, respectively); however, oocytes collected from the alphaERKO were able to undergo successful in vitro fertilization. A similar discrepancy in oocyte yield was observed after superovulation of peripubertal (42 days) wild-type and alphaERKO females. In addition, ovaries from immature superovulated alphaERKO females possessed several ovulatory but unruptured follicles. Investigations of the possible reasons for the reduced number of ovulations in the alphaERKO included ribonuclease protection assays to assess the mRNA levels of several markers of follicular maturation and ovulation, including ERbeta, LH-receptor, cyclin-D2, P450-side chain cleavage enzyme, prostaglandin synthase-2, and progesterone receptor. No marked differences in the expression pattern for these mRNAs during the superovulation regimen were observed in the immature alphaERKO ovary compared with that of the wild-type. Serum progesterone levels just before ovulation were slightly lower in the alphaERKO compared with wild-type. These studies indicate that treatment of alphaERKO females with a GnRH antagonist decreased the serum LH levels to within the wild-type range and concurrently prevented development of the characteristic ovarian phenotype of cystic and hemorrhagic follicles. Furthermore, a lack of functional ERalpha within the ovary had no effect on the regulation of several genes required for follicular maturation and ovulation. However, the reduced numbers of ovulations following the administration of exogenous gonadotropins in the alphaERKO suggests an intraovarian role for ERalpha in follicular development and ovulation.

Full Text

Duke Authors

Cited Authors

  • Couse, JF; Bunch, DO; Lindzey, J; Schomberg, DW; Korach, KS

Published Date

  • December 1999

Published In

Volume / Issue

  • 140 / 12

Start / End Page

  • 5855 - 5865

PubMed ID

  • 10579351

Pubmed Central ID

  • 10579351

International Standard Serial Number (ISSN)

  • 0013-7227

Digital Object Identifier (DOI)

  • 10.1210/endo.140.12.7222

Language

  • eng

Conference Location

  • United States