Estrogen stimulates the transient association of calmodulin and myosin light chain kinase with the chicken liver nuclear matrix.

Published

Journal Article

Previous work has demonstrated that estrogen administration to immature chickens results in a rapid but transient increase in nuclear estrogen receptor content, a large portion of which is associated with the nuclear matrix. The present studies were undertaken to determine whether estrogen produced a more generalized change in the protein composition of the nuclear matrix. High-resolution two-dimensional gel analysis of the matrix revealed a very complex protein pattern, but several major qualitative differences were observed after estrogen treatment. To simplify the number of proteins evaluated, we examined the effects of estrogen on a subset of matrix proteins, namely, calmodulin and its binding proteins. Calmodulin was measured by radioimmunoassay and the binding proteins were detected by interaction of 125I-calmodulin with matrix proteins distributed on one-dimensional polyacrylamide gels. Calmodulin and two specific Ca2+-dependent calmodulin-binding proteins were found to be associated with matrix preparations. The two binding proteins exhibited apparent Mr of 200,000 and 130,000. The Mr 130,000 protein was identified as myosin light chain kinase on the basis of enzymatic activity and immunoreactivity with a specific antibody to this enzyme. Estrogen treatment of immature chickens did not alter the hepatic content of calmodulin. However, the steroid did result in an enrichment of the proportion of calmodulin and its two binding proteins associated with the nuclear matrix within 4 h after injection. The time course of these changes paralleled those previously documented for estrogen receptor. Taken together, these data are compatible with a role for calmodulin and myosin light chain kinase in the response of chicken liver cells to steroid hormones.

Full Text

Duke Authors

Cited Authors

  • Simmen, RC; Dunbar, BS; Guerriero, V; Chafouleas, JG; Clark, JH; Means, AR

Published Date

  • August 1, 1984

Published In

Volume / Issue

  • 99 / 2

Start / End Page

  • 588 - 593

PubMed ID

  • 6547722

Pubmed Central ID

  • 6547722

Electronic International Standard Serial Number (EISSN)

  • 1540-8140

International Standard Serial Number (ISSN)

  • 0021-9525

Digital Object Identifier (DOI)

  • 10.1083/jcb.99.2.588

Language

  • eng