Innovations in shock wave lithotripsy technology: updates in experimental studies.

Journal Article (Academic Article)

PURPOSE: We developed innovations in shock wave lithotripsy (SWL) technology. MATERIALS AND METHODS: Two technical upgrades were implemented in an original unmodified HM-3 lithotriptor (Dornier Medical Systems, Inc., Kennesaw, Georgia). First, a single unit ellipsoidal reflector insert was used to modify the profile of lithotriptor shock wave (LSW) to decrease the propensity of tissue injury in SWL. Second, a piezoelectric annular array (PEAA) generator (f = 230 kHz and F = 150 mm) was used to produce an auxiliary shock wave of approximately 13 MPa in peak pressure (at 4 kV output voltage) to intensify the collapse of LSW induced bubbles near the target stone for improved comminution efficiency. RESULTS: Consistent rupture of a vessel phantom made of single cellulose hollow fiber (i.d. = 0.2 mm) was produced after 30 shocks by the original HM-3 reflector at 20 kV. In comparison no vessel rupture could be produced after 200 shocks using the upgraded reflector at 22 kV or the PEAA generator at 4 kV. Using cylindrical BegoStone phantoms (Bego USA, Smithfield, Rhode Island) stone comminution efficiencies (mean +/- sd) after 1,500 shocks produced by the original and upgraded HM-3 reflectors, and the combined PEAA/upgraded HM-3 system, were 81.3% +/- 3.5%, 90.1% +/- 4.3% and 95.2% +/- 3.3%, respectively (p

Duke Authors

Cited Authors

  • Zhou, Y; Cocks, FH; Preminger, GM; Zhong, P

Published Date

  • November 2004

Published In

Volume / Issue

  • 172 / 5 Pt 1

Start / End Page

  • 1892 - 1898

PubMed ID

  • 15540748

International Standard Serial Number (ISSN)

  • 0022-5347

Conference Location

  • united states