Physiological mechanisms mediating enhanced force generation during development and immune sensitization.

Published

Journal Article

We examined the development of acetylcholinesterase (AChase) activity and tracheal smooth muscle (TSM) contraction elicited by acetylcholine (ACh) in a swine model of maturation and a dog model of allergic bronchospasm. Strips of TSM were tethered isometrically at optimal length and responses were expressed as a percentage of the maximum to KCl-substituted perfusate (% KCl). Maximal contraction (ATmax) to ACh in 2-week-old swine (168 +/- 8% KCl) was greater than in 10-week-old swine (142 +/- 2% KCl; p less than 0.02). The AChase inhibitor, physostigmine, augmented ACh-elicited ATmax in 10-week-old (27% increase; p less than 0.01) but not in 2-week-old swine (2% increase; p is NS) and caused a greater increase in sensitivity to muscarinic activation in 2 versus 10 week-old swine (p less than 0.02), thus demonstrating increased contraction of TSM in 2 versus 10-week-old swine, which results at least in part from reduced AChase activity in immature animals. In another study, TSM from ragweed-sensitized dogs demonstrated augmented efficacy to ACh-elicited contraction (180 +/- 6% KCl) compared with TSM from sham-sensitized, littermate controls (163 +/- 4% KCl; p less than 0.05). In the presence of physostigmine, ATmax was not different between ragweed-sensitized and control TSM.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

Duke Authors

Cited Authors

  • Mitchell, RW; Murphy, TM; Leff, AR

Published Date

  • April 1, 1992

Published In

Volume / Issue

  • 70 / 4

Start / End Page

  • 615 - 623

PubMed ID

  • 1498727

Pubmed Central ID

  • 1498727

International Standard Serial Number (ISSN)

  • 0008-4212

Digital Object Identifier (DOI)

  • 10.1139/y92-079

Language

  • eng

Conference Location

  • Canada