Natural convection in porous media with anisotropic dispersive thermal conductivity

A numerical simulation is undertaken in order to study the effect of anisotropy of the effective thermal conductivity tensor on heat transport in the porous medium Rayleigh-Bénard problem. The momentum equation includes an inertial drag (Forchheimer) term. The effective thermal conductivity tensor, in the energy equation, contains an isotropic stagnant component and a hydrodynamic dispersive component with principal axes aligned with the local velocity vector and with magnitude proportional to the local velocity amplitude. A parametric study of two-dimensional steady cellular convection reveals the following. (1) Dispersion increases the net heat transfer after a Rayleigh number ~ 100-200. As the degree of anisotropy of the effective thermal conductivity is increased, the wall averaged Nusselt number is decreased. (2) Using the available Rayleigh number-wavenumber variation data does not affect the divergence between simulation and experiment. © 1994.

Duke Authors

Cited Authors

  • Howle, LE; Georgiadis, JG

Published Date

  • 1994

Published In

Volume / Issue

  • 37 / 7

Start / End Page

  • 1081 - 1094

International Standard Serial Number (ISSN)

  • 0017-9310

Citation Source

  • SciVal