Water permeability and mechanical strength of polyunsaturated lipid bilayers.

Published

Journal Article

Micropipette aspiration was used to test mechanical strength and water permeability of giant-fluid bilayer vesicles composed of polyunsaturated phosphatidylcholine PC lipids. Eight synthetic-diacyl PCs were chosen with 18 carbon chains and degrees of unsaturation that ranged from one double bond (C18:0/1, C18:1/0) to six double bonds per PC molecule (diC18:3). Produced by increasing pipette pressurization, membrane tensions for lysis of single vesicles at 21 degrees C ranged from approximately 9 to 10 mN/m for mono- and dimono-unsaturated PCs (18:0/1, 18:1/0, and diC18:1) but dropped abruptly to approximately 5 mN/m when one or both PC chains contained two cis-double bonds (C18:0/2 and diC18:2) and even lower approximately 3 mN/m for diC18:3. Driven by osmotic filtration following transfer of individual vesicles to a hypertonic environment, the apparent coefficient for water permeability at 21 degrees C varied modestly in a range from approximately 30 to 40 microm/s for mono- and dimono-unsaturated PCs. However, with two or more cis-double bonds in a chain, the apparent permeability rose to approximately 50 microm/s for C18:0/2, then strikingly to approximately 90 microm/s for diC18:2 and approximately 150 microm/s for diC18:3. The measurements of water permeability were found to scale exponentially with the reduced temperatures reported for these lipids in the literature. The correlation supports the concept that increase in free volume acquired in thermal expansion above the main gel-liquid crystal transition of a bilayer is a major factor in water transport. Taken together, the prominent changes in lysis tension and water permeability indicate that major changes occur in chain packing and cohesive interactions when two or more cis-double bonds alternate with saturated bonds along a chain.

Full Text

Duke Authors

Cited Authors

  • Olbrich, K; Rawicz, W; Needham, D; Evans, E

Published Date

  • July 2000

Published In

Volume / Issue

  • 79 / 1

Start / End Page

  • 321 - 327

PubMed ID

  • 10866958

Pubmed Central ID

  • 10866958

Electronic International Standard Serial Number (EISSN)

  • 1542-0086

International Standard Serial Number (ISSN)

  • 0006-3495

Digital Object Identifier (DOI)

  • 10.1016/s0006-3495(00)76294-1

Language

  • eng