Time-dependent interaction between water at supercritical pressures and a hot surface

This article presents a numerical study of the thermal and fluid flow interaction driven by the sudden contact between saturated liquid water (373 K) and a hot (2300 K) spherical or plane surface. It is shown that under these conditions the sudden contact is characterized initially by single-phase interfacial water and supercritical pressure that decays in time as the water is accelerated away from the interface. The sudden contact generates (high) temperature, pressure, and density waves that propagate away from the surface. The water is modeled as an inviscid single-phase fluid that behaves either as an ideal gas or a real gas with properties taken from steam tables. The ideal-gas results are in good qualitative and quantitative (within a factor of order 1) agreement with the results based on the real-gas model. When the hot object is large (radius ≳ 10 mm), the results are insensitive to the geometry of the model (i.e., spherical versus plane).

Duke Authors

Cited Authors

  • Craciunescu, O; Bejan, A; Cacuci, DG; Schütz, W

Published Date

  • 1996

Published In

  • Numerical Heat Transfer; Part A: Applications

Volume / Issue

  • 30 / 6

Start / End Page

  • 535 - 553

Citation Source

  • SciVal