A comparison of nonlinear flood forecasting methods

Published

Journal Article

Two nonlinear models, nonlinear prediction (NLP) and artificial neural networks (ANN), are compared for multivariate flood forecasting. For NLP the calibration of the locally linear model is quite simple, while for ANN the validation and identification of the model can be cumbersome, mainly because of overfitting. Very good results are obtained with the two methods: NLP performs slightly better at short forecast times while the situation is reversed for longer times.

Full Text

Duke Authors

Cited Authors

  • Laio, F; Porporato, A; Revelli, R; Ridolfi, L

Published Date

  • January 1, 2003

Published In

Volume / Issue

  • 39 / 5

International Standard Serial Number (ISSN)

  • 0043-1397

Digital Object Identifier (DOI)

  • 10.1029/2002WR001551

Citation Source

  • Scopus