Simulation of eolian saltation.


Journal Article

Saltation is important in the transport of sand-sized granular material by wind and in the ejection of dust from the bed both on Earth and on Mars. The evolution of the saltating population and all its characteristic profiles is calculated from inception by pure aerodynamic entrainment through to steady state. Results of numerical simulations of single-grain impacts into granular beds are condensed into analytic expressions for the number and speeds of grains rebounding or rejected (splashed) from the bed. A model is combined with (i) this numerical representation, (ii) an expression for the aerodynamic entrainment rate, and (iii) the modification of the wind velocity profile by saltating grains. Calculated steady state mass fluxes are within the range of mass fluxes measured in wind tunnel experiments; mass flux is nonlinearly dependent on the shear velocity. Aerodynamically entrained grains in the system are primarily seeding agents; at steady state, aerodynamic entrainment is rare. The time for the entire system to reach steady state is roughly 1 second, or several long-trajectory hop times.

Full Text

Duke Authors

Cited Authors

  • Anderson, RS; Haff, PK

Published Date

  • August 1988

Published In

Volume / Issue

  • 241 / 4867

Start / End Page

  • 820 - 823

PubMed ID

  • 17829176

Pubmed Central ID

  • 17829176

Electronic International Standard Serial Number (EISSN)

  • 1095-9203

International Standard Serial Number (ISSN)

  • 0036-8075

Digital Object Identifier (DOI)

  • 10.1126/science.241.4867.820


  • eng