Numerical simulation of the flow of highly viscous drops down a tapered tube.

Journal Article

The flow of a highly viscous drop surrounded by an inviscid fluid inside a tapered tube is analyzed according to a Newtonian, liquid-drop model in which a variational method is used to simultaneously solve the hydrodynamic equations for low Reynolds-number flow and the equations for membrane equilibrium with a constant membrane tension. It is found that the flow in the end caps is plug and radial in the conical section of the drop. The results are compared to a simplified analytical theory that makes these assumptions. Very good agreement is found between the two approaches. Both approaches are used to analyze existing experimental results of passive neutrophils flowing down a tapered tube. The theoretical models give a good fit to published experimental data by Bagge et al. (1977) at driving pressures of 20 and 40 mm H2O for a membrane cortical tension of 0.024 dyn/cm and an apparent cytoplasmic viscosity of about 2400 and 1400 poise, respectively.

Full Text

Duke Authors

Cited Authors

  • Tran-Son-Tay, R; Kirk, TF; Zhelev, DV; Hochmuth, RM

Published Date

  • May 1994

Published In

Volume / Issue

  • 116 / 2

Start / End Page

  • 172 - 177

PubMed ID

  • 8078323

International Standard Serial Number (ISSN)

  • 0148-0731

Language

  • eng

Conference Location

  • United States