Mechanical behavior of articular cartilage in shear is altered by transection of the anterior cruciate ligament.

Journal Academic Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.

The flow-independent viscoelastic and equilibrium behaviors of canine articular cartilage were examined with time after transection of the anterior cruciate ligament. The equilibrium, transient, and dynamic shear behaviors of cartilage were studied in biaxial compression-torsion testing at two time periods after transection of the anterior cruciate ligament and at two sites on the femoral condyle, in order to test for differences between sites of frequent and less frequent contact. Water content also was measured in cartilage at sites corresponding to the areas of mechanical testing. Transection of the anterior cruciate ligament produced significant decreases in all measured moduli of articular cartilage tested in equilibrium and dynamic shear and in equilibrium compression; the values for these moduli were 61, 56, and 77% of the control values, respectively, beginning at 6 weeks following transection of the anterior cruciate ligament. There was evidence of increased energy dissipation of cartilage in shear, with a 13 and 35% increase in tan delta at 6 and 12 weeks after transection of the anterior cruciate ligament, respectively. Changes in the viscoelastic relaxation function of cartilage in shear also were evident at 12 weeks after surgery. In all tissue, there was a significant increase in hydration of approximately 4% at 6 or 12 weeks after surgery. There was little difference between the material parameters for areas considered to be in frequent and less frequent contact, with the exception of hydration, which was greater for areas of less frequent contact.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

Duke Authors

Cited Authors

  • Setton, LA; Mow, VC; Howell, DS

Published Date

  • July 1995

Published In

Volume / Issue

  • 13 / 4

Start / End Page

  • 473 - 482

PubMed ID

  • 7674064

International Standard Serial Number (ISSN)

  • 0736-0266

Digital Object Identifier (DOI)

  • 10.1002/jor.1100130402


  • eng

Citation Source

  • PubMed