Skip to main content
Journal cover image

On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process

Publication ,  Journal Article
Tan, TY; Li, N; Gösele, U
Published in: Applied Physics A: Materials Science and Processing
March 1, 2004

For nanowires grown by the vapor-liquid-solid (VLS) process, expressions of the thermodynamically allowed minimum sizes of the nanowire and the liquid phase droplet as functions of the relevant thermodynamic variables have been obtained using Si nanowires (SiNW) grown from metal-silicon (M-Si) systems as the model case. In these expressions the binary nature of the M-Si system, which involves four phases of materials, is accounted for. The liquid droplet minimum size is determined by a unique set of the external M and Si vapor phase pressure values. The SiNW minimum size expression contains two contributions, one due to the liquid droplet composition and one due to the droplet size. These expressions do not predict a limit on the attainable VLS SiNW minimum size, implying ever smaller SiNW can be grown until reaching some growth kinetic limit which is presently unknown. A set of size data of the smallest experimentally grown SiNW appears to have approached an effective limit set by the liquid composition.

Duke Scholars

Published In

Applied Physics A: Materials Science and Processing

DOI

ISSN

0947-8396

Publication Date

March 1, 2004

Volume

78

Issue

4

Start / End Page

519 / 526

Related Subject Headings

  • Applied Physics
  • 5104 Condensed matter physics
  • 5102 Atomic, molecular and optical physics
  • 4016 Materials engineering
  • 0912 Materials Engineering
  • 0205 Optical Physics
  • 0204 Condensed Matter Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Tan, T. Y., Li, N., & Gösele, U. (2004). On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process. Applied Physics A: Materials Science and Processing, 78(4), 519–526. https://doi.org/10.1007/s00339-003-2380-5
Tan, T. Y., N. Li, and U. Gösele. “On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process.” Applied Physics A: Materials Science and Processing 78, no. 4 (March 1, 2004): 519–26. https://doi.org/10.1007/s00339-003-2380-5.
Tan TY, Li N, Gösele U. On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process. Applied Physics A: Materials Science and Processing. 2004 Mar 1;78(4):519–26.
Tan, T. Y., et al. “On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process.” Applied Physics A: Materials Science and Processing, vol. 78, no. 4, Mar. 2004, pp. 519–26. Scopus, doi:10.1007/s00339-003-2380-5.
Tan TY, Li N, Gösele U. On the thermodynamic size limit of nanowires grown by the vapor-liquid-solid process. Applied Physics A: Materials Science and Processing. 2004 Mar 1;78(4):519–526.
Journal cover image

Published In

Applied Physics A: Materials Science and Processing

DOI

ISSN

0947-8396

Publication Date

March 1, 2004

Volume

78

Issue

4

Start / End Page

519 / 526

Related Subject Headings

  • Applied Physics
  • 5104 Condensed matter physics
  • 5102 Atomic, molecular and optical physics
  • 4016 Materials engineering
  • 0912 Materials Engineering
  • 0205 Optical Physics
  • 0204 Condensed Matter Physics