Acoustic model investigation of a multiple carrier frequency algorithm for encoding fine frequency structure: implications for cochlear implants.

Journal Article (Journal Article)

Current cochlear implants provide frequency resolution through the number of channels. Improving resolution by increasing channels is limited by factors such as the physiological feasibility of increasing the number of electrodes, the inability to increase the number of channels for those already implanted, and the increased possibility of channel interactions reducing channel efficacy. Recent studies have suggested an alternative method: providing a continuum of pitch percepts for each channel based on the frequency content of that channel. This study seeks to determine the frequency resolution necessary for the highest performance gain, which may give some indication of the feasibility for implementation in implants. A discrete set of carrier frequencies, instead of a continuum, are evaluated using an acoustic model to measure speech recognition. Performance increased as the number of available frequencies increased, and substantive improvement was seen with as few as two frequencies per channel. The effect of variable frequency discrimination was also assessed, and the results suggest that frequency modulation can still provide benefits with poor frequency discrimination on some channels. These results suggest that if two or more discriminable frequencies per channel can be generated for cochlear implant subjects then an improvement in speech recognition may be possible.

Full Text

Duke Authors

Cited Authors

  • Throckmorton, CS; Selin Kucukoglu, M; Remus, JJ; Collins, LM

Published Date

  • August 2006

Published In

Volume / Issue

  • 218 / 1-2

Start / End Page

  • 30 - 42

PubMed ID

  • 16797896

Electronic International Standard Serial Number (EISSN)

  • 1878-5891

International Standard Serial Number (ISSN)

  • 0378-5955

Digital Object Identifier (DOI)

  • 10.1016/j.heares.2006.03.020


  • eng