Protein purification by fusion with an environmentally responsive elastin-like polypeptide: effect of polypeptide length on the purification of thioredoxin.

Journal Article (Journal Article)

Elastin-like polypeptides (ELPs) undergo a reversible, soluble-to-insoluble phase transition in aqueous solution upon heating through a characteristic transition temperature (T(t)). Incorporating a terminal ELP expression tag into the gene of a protein of interest allows ELP fusion proteins to be purified from cell lysate by cycles of environmentally triggered aggregation, separation from solution by centrifugation, and resolubilization in buffer. In this study, we examine the effect of ELP length on the expression and purification of a thioredoxin-ELP fusion protein and show that reducing the size of the ELP tag from 36 to 9 kDa increases the expression yield of thioredoxin by 4-fold, to a level comparable to that of free thioredoxin expressed without an ELP tag, while still allowing efficient purification. However, truncation of the ELP tag also results in a more complex transition behavior than is observed with larger tags. For both the 36 kDa and the 9 kDa ELP tag fused to thioredoxin, dynamic light scattering showed that large aggregates with hydrodynamic radii of approximately 2 microm form as the temperature is raised to above the T(t). These aggregates persist at all temperatures above the T(t) for the thioredoxin fusion with the 36 kDa ELP tag. With the 9 kDa tag, however, smaller particles with hydrodynamic radii of approximately 12 nm begin to form at the expense of the larger, micron-size aggregates as the temperature is further raised above the T(t). Because only large aggregates can be effectively retrieved by centrifugation, efficient purification of fusion proteins with short ELP tags requires selection of solution conditions that favor the formation of the micron-size aggregates. Despite this additional complexity, our results show that the ELP tag can be successfully truncated to enhance the yield of a target protein without compromising its purification.

Full Text

Duke Authors

Cited Authors

  • Meyer, DE; Trabbic-Carlson, K; Chilkoti, A

Published Date

  • July 2001

Published In

Volume / Issue

  • 17 / 4

Start / End Page

  • 720 - 728

PubMed ID

  • 11485434

Electronic International Standard Serial Number (EISSN)

  • 1520-6033

International Standard Serial Number (ISSN)

  • 8756-7938

Digital Object Identifier (DOI)

  • 10.1021/bp010049o


  • eng