Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner.


Journal Article

We have developed a flying-spot scanner (FSS), for fluorescence imaging of tissues in vivo. The FSS is based on the principles of single-pixel illumination and detection via a raster scanning technique. The principal components of the scanner are a laser light source, a pair of horizontal and vertical scanning mirrors to deflect the laser light in these respective directions on the tissue surface, and a photo multiplier tube (PMT) detector. This paper characterizes the performance of the FSS for fluorescence imaging of tissues in vivo. First, a signal-to-noise ratio (SNR) analysis is presented. This is followed by characterization of the experimental SNR, linearity and spatial resolution of the FSS. Finally, the feasibility of tissue fluorescence imaging is demonstrated using an animal model. In summary, the performance of the FSS is comparable to that of fluorescence-imaging systems based on multipixel illumination and detection. The primary advantage of the FSS is the order-of-magnitude reduction in the cost of the light source and detector. However, the primary disadvantage of the FSS its significantly slower frame rate (1 Hz). In applications where high frame rates are not critical, the FSS will represent a low-cost alternative to multichannel fluorescence imaging-systems.

Full Text

Cited Authors

  • Ramanujam, N; Chen, J; Gossage, K; Richards-Kortum, R; Chance, B

Published Date

  • September 2001

Published In

Volume / Issue

  • 48 / 9

Start / End Page

  • 1034 - 1041

PubMed ID

  • 11534839

Pubmed Central ID

  • 11534839

Electronic International Standard Serial Number (EISSN)

  • 1558-2531

International Standard Serial Number (ISSN)

  • 0018-9294

Digital Object Identifier (DOI)

  • 10.1109/10.942594


  • eng