Skip to main content

Inverse techniques in hyperthermia: a sensitivity study.

Publication ,  Journal Article
Clegg, ST; Samulski, TV; Murphy, KA; Rosner, GL; Dewhirst, MW
Published in: IEEE Trans Biomed Eng
April 1994

Numerical modeling methods and hyperthermia treatment temperature measurements have been used together to reconstruct steady-state tumor temperature distributions. However, model errors will exist which may in turn produce errors in the reconstructed temperature distributions. A series of computer experiments was conducted to study the sensitivity of reconstructed two-dimensional temperature distributions to perfusion distribution modeling errors. Temperature distributions were simulated using a finite element approximation of Pennes' bioheat transfer equation. Relevant variables such as tumor shape, perfusion distribution, and power deposition were modeled. An optimization method and the temperatures "measured" from the simulated temperature distributions were used to reconstruct the tumor temperature distribution. Using this procedure, the sensitivity of the reconstructed tumor temperature distribution to model-related errors, such as the perfusion function, was studied. It was found that: 1) if the problem is conduction dominated, large errors in the perfusion distribution produce only small errors in the reconstructed temperature distribution (maximum error < 1.0 degrees C), and 2) when the actual perfusion distribution contains a small random variation (+/- 15%) which is neglected by the model, the reconstructed temperature distribution will be in good agreement with the actual temperature distribution (maximum error < or = 0.3 degrees.

Duke Scholars

Published In

IEEE Trans Biomed Eng

DOI

ISSN

0018-9294

Publication Date

April 1994

Volume

41

Issue

4

Start / End Page

373 / 382

Location

United States

Related Subject Headings

  • Thermodynamics
  • Signal Processing, Computer-Assisted
  • Sensitivity and Specificity
  • Numerical Analysis, Computer-Assisted
  • Neoplasms
  • Monitoring, Physiologic
  • Hyperthermia, Induced
  • Evaluation Studies as Topic
  • Computer Simulation
  • Body Temperature Regulation
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Clegg, S. T., Samulski, T. V., Murphy, K. A., Rosner, G. L., & Dewhirst, M. W. (1994). Inverse techniques in hyperthermia: a sensitivity study. IEEE Trans Biomed Eng, 41(4), 373–382. https://doi.org/10.1109/10.284965
Clegg, S. T., T. V. Samulski, K. A. Murphy, G. L. Rosner, and M. W. Dewhirst. “Inverse techniques in hyperthermia: a sensitivity study.IEEE Trans Biomed Eng 41, no. 4 (April 1994): 373–82. https://doi.org/10.1109/10.284965.
Clegg ST, Samulski TV, Murphy KA, Rosner GL, Dewhirst MW. Inverse techniques in hyperthermia: a sensitivity study. IEEE Trans Biomed Eng. 1994 Apr;41(4):373–82.
Clegg, S. T., et al. “Inverse techniques in hyperthermia: a sensitivity study.IEEE Trans Biomed Eng, vol. 41, no. 4, Apr. 1994, pp. 373–82. Pubmed, doi:10.1109/10.284965.
Clegg ST, Samulski TV, Murphy KA, Rosner GL, Dewhirst MW. Inverse techniques in hyperthermia: a sensitivity study. IEEE Trans Biomed Eng. 1994 Apr;41(4):373–382.

Published In

IEEE Trans Biomed Eng

DOI

ISSN

0018-9294

Publication Date

April 1994

Volume

41

Issue

4

Start / End Page

373 / 382

Location

United States

Related Subject Headings

  • Thermodynamics
  • Signal Processing, Computer-Assisted
  • Sensitivity and Specificity
  • Numerical Analysis, Computer-Assisted
  • Neoplasms
  • Monitoring, Physiologic
  • Hyperthermia, Induced
  • Evaluation Studies as Topic
  • Computer Simulation
  • Body Temperature Regulation