Skip to main content

Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.

Publication ,  Journal Article
Boyd, M; Ross, SC; Dorrens, J; Fullerton, NE; Tan, KW; Zalutsky, MR; Mairs, RJ
Published in: J Nucl Med
June 2006

UNLABELLED: Recent studies have shown that indirect effects of ionizing radiation may contribute significantly to the effectiveness of radiotherapy by sterilizing malignant cells that are not directly hit by the radiation. However, there have been few investigations of the importance of indirect effects in targeted radionuclide treatment. Our purpose was to compare the induction of bystander effects by external beam gamma-radiation with those resultant from exposure to 3 radiohaloanalogs of metaiodobenzylguanidine (MIBG): (131)I-MIBG (low-linear-energy-transfer [LET] beta-emitter), (123)I-MIBG (potentially high-LET Auger electron emitter), and meta-(211)At-astatobenzylguanidine ((211)At-MABG) (high-LET alpha-emitter). METHODS: Two human tumor cell lines-UVW (glioma) and EJ138 (transitional cell carcinoma of bladder)-were transfected with the noradrenaline transporter (NAT) gene to enable active uptake of MIBG. Medium from cells that accumulated the radiopharmaceuticals or were treated with external beam radiation was transferred to cells that had not been exposed to radioactivity, and clonogenic survival was determined in donor and recipient cultures. RESULTS: Over the dose range 0-9 Gy of external beam radiation of donor cells, 2 Gy caused 30%-40% clonogenic cell kill in recipient cultures. This potency was maintained but not increased by higher dosage. In contrast, no corresponding saturation of bystander cell kill was observed after treatment with a range of activity concentrations of (131)I-MIBG, which resulted in up to 97% death of donor cells. Cellular uptake of (123)I-MIBG and (211)At-MABG induced increasing recipient cell kill up to levels that resulted in direct kill of 35%-70% of clonogens. Thereafter, the administration of higher activity concentrations of these high-LET emitters was inversely related to the kill of recipient cells. Over the range of activity concentrations examined, neither direct nor indirect kill was observed in cultures of cells not expressing the NAT and, thus, incapable of active uptake of MIBG. CONCLUSION: Potent toxins are generated specifically by cells that concentrate radiohalogenated MIBG. These may be LET dependent and distinct from those elicited by conventional radiotherapy.

Duke Scholars

Published In

J Nucl Med

ISSN

0161-5505

Publication Date

June 2006

Volume

47

Issue

6

Start / End Page

1007 / 1015

Location

United States

Related Subject Headings

  • Urinary Bladder Neoplasms
  • Radiotherapy
  • Radiopharmaceuticals
  • Radioisotopes
  • Radiation Dosage
  • Nuclear Medicine & Medical Imaging
  • Humans
  • Glioma
  • Gamma Rays
  • Electrons
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Boyd, M., Ross, S. C., Dorrens, J., Fullerton, N. E., Tan, K. W., Zalutsky, M. R., & Mairs, R. J. (2006). Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J Nucl Med, 47(6), 1007–1015.
Boyd, Marie, Susan C. Ross, Jennifer Dorrens, Natasha E. Fullerton, Ker Wei Tan, Michael R. Zalutsky, and Robert J. Mairs. “Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.J Nucl Med 47, no. 6 (June 2006): 1007–15.
Boyd M, Ross SC, Dorrens J, Fullerton NE, Tan KW, Zalutsky MR, Mairs RJ. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J Nucl Med. 2006 Jun;47(6):1007–1015.

Published In

J Nucl Med

ISSN

0161-5505

Publication Date

June 2006

Volume

47

Issue

6

Start / End Page

1007 / 1015

Location

United States

Related Subject Headings

  • Urinary Bladder Neoplasms
  • Radiotherapy
  • Radiopharmaceuticals
  • Radioisotopes
  • Radiation Dosage
  • Nuclear Medicine & Medical Imaging
  • Humans
  • Glioma
  • Gamma Rays
  • Electrons