Adaptive imaging on a diagnostic ultrasound scanner at quasi real-time rates.

Journal Article (Journal Article)

Constructing an ultrasonic imaging system capable of compensating for phase errors in real-time is a significant challenge in adaptive imaging. We present a versatile adaptive imaging system capable of updating arrival time profiles at frame rates of approximately 2 frames per second (fps) with 1-D arrays and up to 0.81 fps for 1.75-D arrays, depending on the desired near-field phase correction algorithm. A novel feature included in this system is the ability to update the aberration profile at multiple beam locations for 1-D arrays. The features of this real-time adaptive imaging system are illustrated in tissue-mimicking phantoms with physical near-field phase screens and evaluated in clinical breast tissue with a 1.75-D array. The contrast-to-noise ratio (CNR) of anechoic cysts was shown to improve dramatically in the tissue-mimicking phantoms. In breast tissue, the width of point-like targets showed significant improvement: a reduction of 26.2% on average. Brightness of these targets, however, marginally decreased by 3.9%. For larger structures such as cysts, little improvement in features and CNR were observed, which is likely a result of the system assuming an infinite isoplanatic patch size for the 1.75-D arrays. The necessary requirements for constructing a real-time adaptive imaging system are also discussed.

Full Text

Duke Authors

Cited Authors

  • Dahl, JJ; McAleavey, SA; Pinton, GF; Soo, MS; Trahey, GE

Published Date

  • October 2006

Published In

Volume / Issue

  • 53 / 10

Start / End Page

  • 1832 - 1843

PubMed ID

  • 17036791

International Standard Serial Number (ISSN)

  • 0885-3010

Digital Object Identifier (DOI)

  • 10.1109/tuffc.2006.115


  • eng

Conference Location

  • United States