Monitoring the monsoon in the Himalayas: Observations in Central Nepal, June 2001

Journal Article (Academic article)

The Monsoon Himalayan Precipitation Experiment (MOHPREX) occurred during June 2001 along the south slopes of the Himalayas in central Nepal. Radiosondes were launched around the clock from two sites, one in the Marsyandi River basin on the eastern footslopes of the Annapurna range, and one farther to the southwest near the border with India. The flights supported rainfall and other hydrometeorological observations (including surface winds) from the Marsyandi network that has been operated in this region since the spring of 1999. The thermodynamic profiles obtained from the soundings support the observed nocturnal maximum in rainfall during the monsoon, with total column moisture and instability maximized just before rainfall peaks. Coinciding with the appearance of a monsoon depression over central India, the onset of the monsoon in this region was characterized by a weeklong weakening of the upper-level westerlies, and an increase in moisture and convective instability. The vertical structure of convection during the project was intense at times, and frequent thunder and lightning were observed. This is suggestive of monsoon break convection, which is expected to be predominant since the monsoon had not fully matured by the end of the month. Comparisons of the MOHPREX data with the NCEP-NCAR reanalysis data reveal that upper-level winds are characterized relatively well by the reanalysis, taking into account the coarse model topography. However, moisture is severely underestimated, leading to significant underestimation of rainfall by the reanalysis. The interaction of the ambient monsoon flow with the south slopes of the Himalayas, modulated by the diurnal variability of atmospheric state, is suggested as the primary cause of the nocturnal peak in rainfall.

Full Text

Duke Authors

Cited Authors

  • Barros Ana, P; Lang Timothy, J

Published Date

  • 2003

Published In

  • Monthly Weather Review

Volume / Issue

  • 131 / 7

Start / End Page

  • 1408 - 1427

Digital Object Identifier (DOI)

  • 10.1175/1520-0493(2003)1312.0.CO;2