Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area-2A, USA

Journal Article (Journal Article)

The relationship between diatom taxa preserved in surface soils and environmental variables at 31 sites in Water Conservation Area 2A (WCA-2A) of the Florida Everglades was explored using multivariate analyses. Surface soils were collected along a phosphorus (P) gradient and analyzed for diatoms, total P, % nitrogen (N), % carbon (C), calcium (Ca), and biogenic silica (BSi). Phosphorus varied from 315-1781 μg g-1, and was not found to be correlated with the other geochemical variables. Canonical correspondence analysis (CCA) was used to examine which environmental variables correlated most closely with the distributions in diatom taxa. Canonical correspondence analysis with forward selection, constrained and partial CCA, and Monte Carlo permutation tests of significance show the most significant changes in diatom assemblages along the P gradient (p < 0.01), with additional species differences correlated with soil C, N, Ca, and BSi. Weighted-averaging (WA) regression and calibration models of diatom assemblages to P and BSi were developed. The diatom-based inference model for soil [P] had a high apparent r2 (0.86) with RMSE(boot) = 218 μg g-1. Indicator diatom species identified by assessing species WA optima and WA tolerance to [P], such as Nitzschia amphibia and N. palea for high [P] (~1300-1400 μg g-1) and Achnanthes minutissima var. scotica and Mastogloia smithii for low [P] (~400-600 μg g-1), may be useful as monitoring tools for eutrophication in WCA-2A as well as other areas of the Everglades. Diatom assemblages analyzed by Cluster analysis were related to location within WCA2A, and dominant taxa within clusters are discussed in relation to the geochemical variables measured as well as hydrology and pH. Diversity of diatom assemblages and a 'Disturbance Index' based on diatom data are discussed in relation to the historically P-limited Everglades ecosystem. Diatom assemblages should be very useful for reconstructions of [P] through time in the Florida Everglades, provided diatoms are well preserved in soil cores.

Full Text

Duke Authors

Cited Authors

  • Cooper, SR; Huvane, J; Vaithiyanathan, P; Richardson, CJ

Published Date

  • December 1, 1999

Published In

Volume / Issue

  • 22 / 4

Start / End Page

  • 413 - 437

International Standard Serial Number (ISSN)

  • 0921-2728

Digital Object Identifier (DOI)

  • 10.1023/A:1008049224045

Citation Source

  • Scopus