Sodium-dependent proline uptake in the rat hippocampal formation: association with ipsilateral-commissural projections of CA3 pyramidal cells.

Published

Journal Article

Na+-dependent uptake of L-[3H]proline was measured in a crude synaptosomal preparation from the entire rat hippocampal formation or from isolated hippocampal regions. Among hippocampal regions, Na+-dependent proline uptake was significantly greater in areas CA1 and CA2-CA3-CA4 than in the fascia dentata, whereas there was no marked regional difference in the distribution of Na+-dependent gamma-[14C]aminobutyric acid ([14C]GABA) uptake. A bilateral kainic acid lesion, which destroyed most of the CA3 hippocampal pyramidal cells, reduced Na+-dependent proline uptake by an average of 41% in area CA1 and 52% in area CA2-CA3-CA4, without affecting the Na+-dependent uptake of GABA. In the fascia dentata, neither proline nor GABA uptake was significantly altered. Kinetic studies suggested that hippocampal synaptosomes take up proline by both a high-affinity (KT = 6.7 microM) and a low-affinity (KT = 290 microM) Na+-dependent process, whereas L-[14C]glutamate is taken up predominantly by a high-affinity (KT = 6.1 microM) process. A bilateral kainic acid lesion reduced the Vmax of high-affinity proline uptake by an average of 72%, the Vmax of low-affinity proline uptake by 44%, and the Vmax of high affinity glutamate uptake by 43%, without significantly changing the affinity of the transport carriers for substrate. Ipsilateral-commissural projections of CA3 hippocampal pyramidal cells appear to possess nearly as great a capacity for taking up proline as for taking up glutamate, a probable transmitter of these pathways. Therefore proline may play an important role in transmission at synapses made by the CA3-derived Schaffer collateral, commissural, and ipsilateral associational fibers.

Full Text

Duke Authors

Cited Authors

  • Nadler, JV

Published Date

  • October 1, 1987

Published In

Volume / Issue

  • 49 / 4

Start / End Page

  • 1155 - 1160

PubMed ID

  • 2887633

Pubmed Central ID

  • 2887633

International Standard Serial Number (ISSN)

  • 0022-3042

Digital Object Identifier (DOI)

  • 10.1111/j.1471-4159.1987.tb10006.x

Language

  • eng

Conference Location

  • England