Increased AMPA-sensitive quisqualate receptor binding and reduced NMDA receptor binding in epileptic human hippocampus.

Journal Article (Journal Article)

Based on results from the kindling model of epilepsy, we hypothesized that enhanced binding of radioligands to the NMDA receptor and decreased binding to the alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionate (AMPA)-sensitive quisqualate (ASQ) receptor would be found within epileptic hippocampi of humans with complex partial epilepsy (CPE). To test these hypotheses, we used tissue that was surgically removed from patients with intractable CPE, and control tissue that was obtained at autopsy. We used autoradiographic techniques to measure ASQ receptor binding (with 3H-AMPA as the radioligand) and binding to 2 sites on the NMDA receptor/channel complex: the agonist recognition site (with 3H-glutamate) and the phencyclidine (PCP) binding site that resides within the NMDA channel [with 3H-N-(1-[thienyl]cyclohexyl) piperidine (TCP) in the presence of saturating concentrations of NMDA and glycine]. Measurements of receptor binding were corrected for pathologic alterations in neuronal density. Contrary to our expectations, ASQ receptor binding was significantly increased (100%; p less than 0.02) in the dentate gyrus stratum moleculare in patients with CPE (n = 8), and it was unchanged in other hippocampal regions. In nearby sections from the same specimens, binding was significantly decreased to the agonist recognition site of the NMDA receptor in the stratum oriens of area CA3 (46%; p less than 0.05) and was also decreased to the PCP site in the stratum radiatum and stratum oriens of CA3 (44% and 74%, respectively; p less than 0.05). The increase in ASQ receptor binding may contribute to hyperexcitability in these epileptic patients.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text

Duke Authors

Cited Authors

  • Hosford, DA; Crain, BJ; Cao, Z; Bonhaus, DW; Friedman, AH; Okazaki, MM; Nadler, JV; McNamara, JO

Published Date

  • February 1991

Published In

Volume / Issue

  • 11 / 2

Start / End Page

  • 428 - 434

PubMed ID

  • 1846907

Pubmed Central ID

  • PMC6575223

International Standard Serial Number (ISSN)

  • 0270-6474

Digital Object Identifier (DOI)

  • 10.1523/JNEUROSCI.11-02-00428.1991


  • eng

Conference Location

  • United States