Bayesian covariance selection in generalized linear mixed models.

Published

Journal Article

The generalized linear mixed model (GLMM), which extends the generalized linear model (GLM) to incorporate random effects characterizing heterogeneity among subjects, is widely used in analyzing correlated and longitudinal data. Although there is often interest in identifying the subset of predictors that have random effects, random effects selection can be challenging, particularly when outcome distributions are nonnormal. This article proposes a fully Bayesian approach to the problem of simultaneous selection of fixed and random effects in GLMMs. Integrating out the random effects induces a covariance structure on the multivariate outcome data, and an important problem that we also consider is that of covariance selection. Our approach relies on variable selection-type mixture priors for the components in a special Cholesky decomposition of the random effects covariance. A stochastic search MCMC algorithm is developed, which relies on Gibbs sampling, with Taylor series expansions used to approximate intractable integrals. Simulated data examples are presented for different exponential family distributions, and the approach is applied to discrete survival data from a time-to-pregnancy study.

Full Text

Duke Authors

Cited Authors

  • Cai, B; Dunson, DB

Published Date

  • June 2006

Published In

Volume / Issue

  • 62 / 2

Start / End Page

  • 446 - 457

PubMed ID

  • 16918908

Pubmed Central ID

  • 16918908

Electronic International Standard Serial Number (EISSN)

  • 1541-0420

International Standard Serial Number (ISSN)

  • 0006-341X

Digital Object Identifier (DOI)

  • 10.1111/j.1541-0420.2005.00499.x

Language

  • eng