Modeling the developmental neurotoxicity of chlorpyrifos in vitro: macromolecule synthesis in PC12 cells.

Published

Journal Article

Exposure to apparently subtoxic doses of chlorpyrifos during late stages of brain development affects cell acquisition through a mixture of cholinergic and noncholinergic mechanisms. In the current study, we modeled these effects in vitro using rat pheochromocytoma (PC12), a cell line that, upon nerve-growth factor (NGF)-induced differentiation, develops the appearance and function of cholinergic target neurons, including the expression of cholinergic receptors. In the undifferentiated state (no NGF), chlorpyrifos evoked an immediate (1 h), robust, concentration-dependent inhibition of DNA synthesis as evaluated by [3H]thymidine incorporation, with a threshold of 0.5-1.5 microg/ml. Continuous exposure for up to 24 h maintained the same degree of inhibition. The effects were selective for DNA synthesis, as much smaller inhibitions were found for synthesis of RNA or protein. In contrast, direct cholinergic stimulation of the cells by 100 microM nicotine had much smaller effects on DNA synthesis. Moreover, the effects of chlorpyrifos on DNA synthesis could not be blocked by nicotinic or muscarinic antagonists, confirming that the effects were not mediated primarily through cholinergic hyperstimulation consequent to cholinesterase inhibition or to direct receptor-mediated effects. When PC12 cells underwent NGF-induced differentiation, the rate of cell replication fell dramatically and neurite extension was evident both from morphological examination and from biochemical markers (increased protein:DNA ratio). After introduction of NGF, chlorpyrifos maintained its ability to inhibit DNA synthesis acutely. However, the ability to inhibit RNA and protein synthesis initially intensified and then disappeared, indicating a shift in macromolecular targets as differentiation proceeded. We also tested the effects of long-term exposure to chlorpyrifos during the process of NGF-induced differentiation. Continuous chlorpyrifos exposure resulted in severe reductions in macromolecule synthesis and a deficit in the total number of cells, effects similar to those seen with chlorpyrifos treatment in vivo. At the highest concentrations, neurite extension was also inhibited. Our results suggest that chlorpyrifos can interact directly with developing neural cells to inhibit replication and neuritic outgrowth.

Full Text

Duke Authors

Cited Authors

  • Song, X; Violin, JD; Seidler, FJ; Slotkin, TA

Published Date

  • July 1998

Published In

Volume / Issue

  • 151 / 1

Start / End Page

  • 182 - 191

PubMed ID

  • 9705902

Pubmed Central ID

  • 9705902

Electronic International Standard Serial Number (EISSN)

  • 1096-0333

International Standard Serial Number (ISSN)

  • 0041-008X

Digital Object Identifier (DOI)

  • 10.1006/taap.1998.8424

Language

  • eng