Cellular regulation of the benzodiazepine/GABA receptor: arachidonic acid, calcium, and cerebral ischemia.

Journal Article (Journal Article)

The effects of cellular mediators that contribute to ischemia-induced neuronal degeneration on gamma-aminobutyric acid (GABAA)-receptor function were studied. In vitro, phospholipase A2 (PLA2) inhibited muscimol-induced 36Cl- uptake in cerebral cortical synaptoneurosomes. The major hydrolysis product of PLA2 activity, arachidonic acid, also inhibited GABA-mediated 36Cl- uptake. The unsaturated nature of arachidonic acid makes it (and its metabolites) highly susceptible to peroxidation by oxygen radicals. Incubation of synaptoneurosomes with the superoxide radical-generating system, xanthine and xanthine oxidase, decreased muscimol-induced 36Cl- uptake, suggesting that the peroxidation of arachidonic acid and/or its metabolites interferes with GABAA-receptor function. Another factor involved in ischemia-induced neuronal degeneration is an increase in intracellular Ca2+. Calcium also inhibited GABA-mediated 36Cl- flux, consistent with its ability to activate PLA2. In contrast, Mg2+, which blocks Ca2+ channels, enhanced muscimol-induced 36Cl- uptake, consistent with its neuroprotective effects. Each of these cellular processes is activated during cerebral ischemia and can lead to neuronal degeneration. We used a model of transient forebrain ischemia in gerbils to determine if GABAA-receptor regulation is altered in vivo at a time when CA1 hippocampal cells have degenerated. Four days after a 5 minute bilateral carotid artery occlusion, receptor autoradiography was performed to measure the binding of [35S]t-butylbicyclophosphorothionate (TBPS) to the GABA-gated chloride channel. Significant decreases in TBPS binding were observed only in the dendritic layers (stratum oriens and lacunosem moleculare) of the CA1 hippocampus. The results suggest that ischemia-induced cellular processes that contribute to cell death can decrease GABA-gated chloride channels on dendrites of CA1 pyramidal cells, and that GABAA receptors may also reside on neurons afferent to or intrinsic to the dendritic layers of CA1 hippocampus.

Full Text

Duke Authors

Cited Authors

  • Schwartz, RD; Yu, X; Wagner, J; Ehrmann, M; Mileson, BE

Published Date

  • February 1, 1992

Published In

Volume / Issue

  • 6 / 2

Start / End Page

  • 119 - 125

PubMed ID

  • 1319167

International Standard Serial Number (ISSN)

  • 0893-133X


  • eng

Conference Location

  • England